Construction of fuzzy knowledge bases incorporating feature selection
نویسندگان
چکیده
Constructing concise fuzzy rule bases from databases containing many features present an important yet challenging goal in the current researches of fuzzy rule-based systems. Utilization of all available attributes is not realistic due to the “curse of dimensionality” with respect to the rule number as well as the overwhelming computational costs. This paper proposes a general framework to treat this issue, which is composed of feature selection as the first stage and fuzzy modeling as the second stage. Feature selection serves to identify significant attributes to be employed as inputs of the fuzzy system. The choice of key features for inclusion is equivalent to the problem of searching for hypotheses that can be numerically assessed by means of case-based reasoning. In fuzzy modeling, the genetic algorithm is applied to explore general premise structure and optimize fuzzy set membership functions at the same time. Finally, the merits of this work have been demonstrated by the experiment results on a real data set.
منابع مشابه
Computational Intelligence in Data Mining
This paper describes links between computational intelligence (CI), data mining and knowledge discovery. The generating elements of soft computing based data mining algorithms are defined where the extracted knowledge is represented by fuzzy rule-based expert systems. It is recognized that both model performance and interpretability are of major importance, and effort has to make to keep the re...
متن کاملEnhancing Concept Based Modeling Approach for Blog Classification
Blogs are user generated content discusses on various topics. For the past 10 years, the social web content is growing in a fast pace and research projects are finding ways to channelize these information using text classification techniques. Existing classification technique follows only boolean (or crisp) logic. This paper extends our previous work with a framework where fuzzy clustering is o...
متن کاملFuzzy-rough Information Gain Ratio Approach to Filter-wrapper Feature Selection
Feature selection for various applications has been carried out for many years in many different research areas. However, there is a trade-off between finding feature subsets with minimum length and increasing the classification accuracy. In this paper, a filter-wrapper feature selection approach based on fuzzy-rough gain ratio is proposed to tackle this problem. As a search strategy, a modifie...
متن کاملA hybrid filter-based feature selection method via hesitant fuzzy and rough sets concepts
High dimensional microarray datasets are difficult to classify since they have many features with small number ofinstances and imbalanced distribution of classes. This paper proposes a filter-based feature selection method to improvethe classification performance of microarray datasets by selecting the significant features. Combining the concepts ofrough sets, weighted rough set, fuzzy rough se...
متن کاملWavelet Feature Selection Using Fuzzy Approach to Text Independent Speaker Recognition
A wavelet feature selection derived by using fuzzy evaluation index for speaker identification is described. The concept of a flexible membership function incorporating weighed distance is introduced in the evaluation index to make the modeling of clusters more appropriate. Our results have shown that this feature selection introduced better performance than the wavelet features with respect to...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Soft Comput.
دوره 10 شماره
صفحات -
تاریخ انتشار 2006